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In this paper, air entrainment by a liquid jet is studied. The size of bubbles entrained
by jets plunging into a liquid can be consistently decreased to the 50–100 µm range,
and their number increased in a highly controllable fashion, by surrounding a mm-size
jet by a hollow cap with a slightly larger inner diameter. When the right amount
of air is supplied to the cap, small air bubbles detach from a steady annular cavity
that forms around the jet and are entrained into the liquid. The fluid mechanical
principles underlying this interesting and useful effect are investigated experimentally
and theoretically in this paper. It is shown that a key aspect of the process is the
jet surface roughness, which is studied quantitatively and explained in terms of the
boundary layer instability inside the nozzle. The maximum bubble size is found to
be nearly equal to one quarter of the wavelength of the jet surface disturbances,
consistent with a breakup process of relatively large air pockets around the jet,
as suggested by close-up pictures. The average bubble size downstream of the cap
increases proportionally to the air to water flow ratio. Boundary integral simulations
of the air pocket formation are carried out. The results are found to be useful
in explaining important characteristics of the experiment such as the threshold for
entrainment and cavity size.

1. Introduction
The production of gas bubbles constitutes an important as well as a costly compo-

nent in a wide variety of industrial applications such as gas–liquid reactors (Burgess,
Molloy & McCarthy 1972) biological reactors (Boulton-Stone & Blake 1993), pu-
rification of liquids (Dixon et al. 1991), waste water treatment (Tchobanoglous &
Burton 1991), and fish pond aeration (Tucker & Robinson 1990). In other cases of
practical importance, such as flotation columns, it is the buoyancy of the gas bubbles
that produces the desired effect. Bubbles are also known to be excellent underwater
acoustic shock absorbers that can be used as a protection from a nearby explosion.
The common point of the aforementioned applications is that they all require small
bubbles to be generated in large quantities. The classical way of accomplishing this
task is to force gas through a submerged orifice and has been extensively studied in
the literature. Excellent reviews have been given by Ramakrishnan, Kumar & Kuloor
(1969) and Satyanarayan, Kumar & Kuloor (1969). The interest in the subject has
been high over the years (e.g. Marmur & Rubin 1976; Blanchard & Syzdek 1977;
Tsuge, Hibino & Nojima 1981; Baker & de Nevers 1984; Pamperin & Rath 1995).
Gas bubbles in liquids can also be efficiently produced by directing a liquid jet at
a liquid surface. Although the process of air entrainment by a liquid jet has been



190 H. N. Og̃uz

Water

Air

Cap

Bubbles

Nozzle

Figure 1. Schematic description of the small bubble generation technique by a nozzle
fitted with a hollow cap.

investigated for a long time, its industrial use has been limited probably due to the
incomplete understanding that has been achieved.

The earliest study of air entrainment by a liquid jet is by Lin & Donnelly (1966).
They observed that disturbances on the jet surface are primarily responsible for the
air entrainment process in the case of turbulent jets. This is in contrast to very viscous
jets where the breakup of a thin film between the jet and the receiving liquid is the
dominant mechanism. Subsequent publications confirmed this hypothesis and several
empirical relations describing the entrainment rate have been proposed. McCarthy,
Henderson & Molloy (1970) related the jet surface roughness to the air entrainment
rate. Motivated by this finding, Burgess, Molloy & McCarthy (1972) examined the
effect of the nozzle geometry. Van de Sande & Smith (1973) considered the limit of
high speed jets and found a new regime of continuous entrainment where the gas
boundary layer around the jet cannot be ignored. In a subsequent publication they
studied lower velocity jets and established two regimes based on the breakup length of
the jet (Van De Sande & Smith 1976). Lara (1979) studied the onset of entrainment
for jets near the point where they disintegrate into droplets by capillary breakup.
Detsch & Sharma (1990) determined the critical angle of entrainment for jets of
various air–liquid combinations. Further empirical relations on the entrainment rate
have been given by McKeogh & Ervine (1981), Sene (1988), and others. Recently,
Bin (1993) gave an exhaustive survey of experimental and theoretical results on gas
entrainment by plunging jets.

In this paper we study the fluid dynamical mechanisms underlying a new method
by which very small bubbles can be produced in liquids. The principle is similar to
plunging jet entrainment except for the fact that the nozzle from which the jet issues
is fitted with a cylindrical cap (figure 1). The cap is hollow with an inner diameter
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slightly larger than the nozzle diameter and is flooded with the liquid surrounding the
assembly. Air is fed into the cap at the jet exit so that a gaseous annulus is formed
around the jet. Along the intersection line between the jet and the liquid in the
annulus myriads of bubbles are seen to be entrained into the liquid. Our study shows
that this effect is critically dependent on the presence of suitable surface disturbances
on the surface of the jet. With this system it is also possible to study in detail this
effect that previously has only been considered in a qualitative sense.

The idea of enclosing the jet with a tube is not new and has been proposed to
pump gas into a liquid (Cunningham 1974). The maximum depth to which bubbles
can travel is limited because the jet slows down considerably due to spreading and
turbulent dissipation in the liquid. Ohkawa et al. (1986) have shown that it is possible
to increase this depth by means of downcomers in air–water systems. Here, the
purpose of enclosing the jet is to achieve a better control of the input energy in
producing very small bubbles. The nozzle diameter is of the order of a millimetre
as opposed to a few millimetres reported by Ohkawa et al. (1986). Moreover, the
gap between the jet and the enclosing downcomer is in the few millimetres range in
their setup, whereas we only have a 400 µm tolerance which enables us to ignore
gravitational effects. In our nozzles, the surface tension force alone is enough to keep
the air annulus steady in any orientation. Therefore, the nozzle need not be close to
vertical or close to the surface. All experiments reported in this paper were performed
5 to 10 cm below the free surface and the orientation did not have any effect on the
operation of the nozzle.

There are several subtle points underlying the design of the system described above.
The nozzle size is kept small to achieve higher efficiency by inputing the energy to
the flow at the right scales. This results in superior performance when compared to
traditional techniques of small bubble production. Normally, mechanical agitators are
employed to reduce the size of the entrained bubbles (Shah 1992). In order to reduce
bubble size the input forcing must have a very short spatial scale. When mechanical
agitators are used, the bulk of energy ends up in the long scales. Because of the sharp
spectral decay of the energy, the efficiency suffers greatly even though the total energy
needed is in fact small. At the other limit, very small nozzles are impractical since
they lead to high dissipation losses and are prone to clogging problems. Also, higher
speeds are needed in smaller nozzles to produce the same effect since turbulence in
the jet is the main driving force.

2. Experimental setup
Experiments were performed in a 75×45×30 cm transparent glass tank filled with

tap water (figure 2). Water is circulated with a pump and the flow rate is monitored
with a flowmeter (Omega FL 3840) that can measure rates up to 30 ml s−1 with
an accuracy of ± 0.3 ml s−1. A laboratory air supply line equipped with a pressure
regulator set at 20 p.s.i. is used as the source of gas to ensure a steady flow rate. The
flow meter (Omega FL 3445) attached to this line has a range of 0–1.3 ml s−1 with
an accuracy of ± 0.03 ml s−1. Tygon tubing is used for water as well as air delivery
to the nozzle. The inner diameters are 0.8 and 9.5 mm for air and water respectively.
Nozzles of various types are fabricated from aluminium. All caps are machined from
acrylic cylindrical blocks and polished for a better view of the interior. The cap’s
inner wall is coated with a thin layer of wax to create a hydrophobic surface. The air
cavity has been observed to be unsteady without this treatment.

Still images of the nozzle and the bubbles were captured with a digital CCD camera
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Figure 2. Experimental setup.

(Pulnix 9700) that has a resolution of 780× 480 pixels. We have used a 55 mm Micro
Nikon lens in conjunction with an extension ring (Nikon PK13). For the purpose of
measuring bubble size distribution we have set the camera to its highest magnification
achieving a resolution of 7.3 µm per pixel horizontally and 8.4 µm per pixel vertically.
These numbers are obtained by taking the picture of a ruler and counting pixels over
a length of 5 mm. A 35 mm Nikon F3 camera has also been employed in the earlier
phase of this work. Pictures were taken with the high speed Kodak film T1000 and the
negatives were digitized with Nikon Coolscan digitizer (max 2700 d.p.i.). Even though
higher resolution can be obtained in this way, the turn-around time associated with
film processing and digitization makes the acquisition of a large number of pictures
impractical.

Illumination is provided by a 6 µs strobe (EGG MV1000) which is placed directly
behind the tank. A 4 mm white plastic screen used as a diffuser between the strobe
and the camera provided adequate lighting for backlit pictures.

3. Basic description of the process
There are two parameters of importance for a given nozzle geometry: the air and

water flow rates. One can identify several regimes of operation for the nozzle by
varying these parameters. We first conduct a dimensional analysis and consider the
relevant forces acting on the fluid to have a basic understanding of these regimes.

In view of the thinness of the jets (0.8–1.2 mm) and relatively high velocities
(6–8 m s−1) gravity is not expected to play a significant role. In fact, the smallest
Froude number, Fr = U2

jet/gRjet is around 300, where Ujet and Rjet are the average
velocity and radius of the jet, and g is the gravitational acceleration. Therefore,
gravitational effects can safely be ignored.

The role of viscous forces is less clear. Let us consider the case of a steady smooth
jet as a base state. This situation arises when the flow is laminar. We ignore all
viscous effects in the gas and concentrate on the flow field generated by the jet in
the cap. Under the typical flow conditions of this regime the Reynolds number is
relatively high (but not so high as to make the jet turbulent) and the jet enters the
slug of water in the cap maintaining its integrity for many jet diameters. The jet
streamlines separate from the free surface along the intersection of the jet with it
and a recirculatory flow develops in the thin liquid-filled gap between the penetrating
jet and the cap. If we assume that viscous stresses are of the order of µwaterUjet/δ



The entrainment of bubbles by a liquid jet 193

where δ = Rcap−Rjet is the gap thickness, we can calculate the corresponding surface
deformation by forming a balance with surface tension. In this way the radius of
curvature Rcurv of the free surface is found to be

Rcurv

δ
=

σ

µUjet

. (1)

For the largest velocity, U = 8.3 m s−1, this ratio is about 8.4 indicating that the
free surface surrounding the jet in the cap is nearly flat. The viscous contribution to
surface deformation is therefore negligibly small.

A more detailed analysis to confirm this conclusion can be conducted as follows.
The flow field around the jet in the cap is similar to that in a boundary layer with
a boundary layer thickness of the order δ. The analogy is based on the fact that
the length scale in the direction of the flow, X, is much larger than the length scale
normal to the flow, δ. By using well known arguments from boundary layer theory,
we deduce that the pressure gradient normal to the boundary layer is small and of
the order of δρU2

jet/X
2 where ρ is the density. Here we are interested in the pressure

gradient rather than the pressure itself because the gradient is the relevant quantity
for surface deformation. The integral of this pressure gradient over the boundary
layer thickness is µUjet/X assuming that (δ/X)2 = O(1/Re) as in boundary layer
theory. If a ratio between the pressure difference, µUjet/X, and the surface tension
stress σ/δ is formed, we find a scaled capillary number

Ca =
µUjet

σ

δ

X
. (2)

For the largest velocity, U = 8.3 m s−1, this number is found to be 0.12δ/X which
is always much smaller than one, indicating the dominance of surface tension force
over viscous stresses.

As for the inertial forces, they do not participate significantly in the deformation of
the free surface in this ideal configuration where the jet is laminar and the flow steady.
Therefore surface tension, being the sole dominant force in this regime, keeps the free
surface nearly flat preventing any air entrainment. It should be pointed out that this
is a consequence of the smallness of the ratio µ/σ for water. According to the above
analysis, for water, the required minimum jet velocity for laminar entrainment (so
that Ca > 1) is around 70 m s−1. However, this limit is impossible to reach in practice
as the jet becomes turbulent at much lower velocities. As noted before, laminar jets
of high viscosity that are not enclosed with a hollow cap are known to entrain air in
the form of a thin film around the jet below the free surface for Ca > 1. See Lin &
Donnelly (1966).

The conclusions from this simple dimensional analysis are consistent with observa-
tion. In figure 3(a) we show an image of the cap where a smooth laminar jet meets
the cylindrical body of water in the cap. In this backlit picture, water appears bright
and air dark. The jet issuing from left to right is visible in the dark air cavity on the
left. In this case there is no air flow into the cap and there are no entrained bubbles.
This configuration is quite stable in the absence of mechanical disturbances.

As air is supplied into the cap, the air shroud around the jet moves downstream
(to the right in figure 3b) and extends all the way to the exit of the cap where large
bubbles are seen to grow and detach from the end of the cap into the liquid (figure 3b).
In this first regime, the jet is laminar and only large bubbles can be entrained. It is
of little interest for the purpose of producing small bubbles.

The transition to the second regime is observed when the jet velocity is increased
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Figure 3. Three modes of nozzle operation: steady cavity shape for a smooth jet without entrainment
(a). As the jet velocity is increased at a fixed airflow rate (0.278 ml s−1) (b), the jet becomes rough
and the air cavity in the cap shrinks (c, d).

to the point that its surface becomes rough. At this point the jet becomes turbulent
and starts entraining small air bubbles into water. The jet entry point moves back
(to the left in figure 3c) from the exit of the cap toward the nozzle exit. The process
of air entrainment now occurs inside the cap (figure 3c) rather than at the exit as
in figure 3(b). Entrained bubbles are seen as small black dots in this picture. The
boundary between the regimes (b) and (c) is obviously a function of the cap’s length
as well as the flow conditions.

The inertial forces are drastically different in this second regime than the smooth jet
case of the first regime. Disturbances riding on the jet surface are capable of creating
an over-pressure of the order of ρU2

jet upon hitting the free surface. Assuming that
the surface tension opposes this pressure force, a Weber number can be constructed
as

We =
ρU2

jetε

σ
, (3)

where ε is the average amplitude of disturbances on the jet surface. If we take
ε = 20 µm, for instance, we find We = 7 for U = 5 m s−1 and We = 4.6 for
U = 4 m s−1. So it appears that the inertia of the little bumps on the jet surface is
strong enough to deform the free surface and entrain bubbles even for disturbances
as small as 20 µm. As for viscous effects, it is reasonable to assume that the role of
viscosity on entrainment remains negligible since the relevant quantities such as Ujet,
µ, σ, and δ are hardly affected by the unsteady nature of the flow when compared to
the laminar jet case. Therefore, the previous analysis of the viscous forces still holds
in spite of the more complicated nature of the flow.

There is an interesting connection between the process of air entrainment by a jet
and the length of the cavity in the cap. It has been known for some time that the
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air entrainment rate is related to jet surface roughness (McCarthy et al. 1970) by a
relation that can be approximated by

Qent = 2πRjetε(L)Ujet, (4)

for disturbances that are small compared to the jet radius. Here ε(L) is the average
jet roughness at a distance L from the nozzle exit. Since Rjet and Ujet are almost
constant throughout the length of the cap, the range of ε, i.e. εmin − εmax, determines
the range of the second regime in figure 3(c). If ε were almost uniform over the jet
length, there would only be a narrow range of Ujet for which Qent = Qair where Qair
is the imposed air flow rate into the air shroud around the jet. Indeed, if Ujet were
greater than the equilibrium value, more air than is supplied into the cap would be
entrained and the air shroud would disappear as the turbulence level at the exit of
the nozzle would be sufficient to instantly disintegrate air injected into the cap into
small bubbles before they can form a continuous shroud around the jet (figure 3d).
This third regime is similar to a Venturi type aeration commonly found in many
industrial systems. Conversely, when Ujet is smaller than the critical value, less air
will be consumed by the jet and the air shroud will grow out of the cap as in figure
3(b).

It is evident that, in order to have a broader range of stable entrainment, there
must be a mechanism that increases the entrainment rate as the air cavity grows and
decreases it when it contracts. Equation (4) shows that a disturbance level ε increasing
with the jet length L exposed to air would have precisely this effect. This point can
be demonstrated by means of a simple kinematic model constructed by using the
conservation of air in the cavity. We first develop the model for the general unsteady
process, and then study the time-independent solution. Assuming that the air density
is constant, a mass balance gives

π(R2
cap − R2

jet)L̇ = Qair − Qent (5)

where L̇ is the time derivative of the cavity length, Qair is the air flow rate injected into
the cavity, and Rcap is the inner radius of the cap. Consider a case in which we have a
roughness distribution described around the equilibrium position of the interface by

ε(L) = α+ βL, (6)

where α and β are constant. Since the capillary waves on the jet grow, one expects
β to be positive as is indeed confirmed by our and others’ experiments (see e.g. Van
Dyke 1982, p. 105). When (4) and (6) are employed in (5) together with the condition
L̇ = 0, the equilibrium length of the cavity, L0, is obtained as

L0 =
Qair − 2πRjetUjetα

2πRjetUjetβ
. (7)

Substitution of (4) and (6) into (5) yields the evolution equation for L

π(R2
cap − R2

jet)L̇+ 2πRjetUjetβ(L− L0) = 0. (8)

Hence L satisfies a relaxation relation with a time constant of

τ =
R2
cap − R2

jet

2RjetUjetβ
. (9)

When typical values are substituted into (9), the cavity response is found to be
consistent with observation. For instance, the case in which Ujet = 7 m s−1, Rcap =
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Figure 4. Jet shapes produced by smooth, sharp and conical nozzles. Here the jet velocity and
radius are 7.3 m s−1 and 0.8 mm respectively.

1.2 mm, Rjet = 0.8 mm, β = 10 µm/5 mm = 0.0002, yields a time constant of
τ = 0.36 s as compared with a value of 0.5 s estimated from the experiment. Note
that according to (7), a stable L0 cannot be attained if β < 0. It is also evident that
an excessively small value of β would present problems. Indeed, it was very difficult
to find an equilibrium position for jets with a nearly uniform roughness distribution,
i.e. small β. In those cases, the cavity wildly oscillated back and forth in the cap.

To estimate the amplitude of fluctuations in L we consider the situation in which
the jet roughness goes through a sudden change. If we assume that this jump is ∆ε
and its duration is ∆t then the parameter α in (6) becomes

α = α0 + ∆ε[H(t)−H(t− ∆t)], (10)

where α0 is the equilibrium value and H is the Heaviside function. The response of
the system is obtained by solving the differential equation (8),

L− L0 = −∆ε

β

[(
1− e−t/τ

)
−H(t− ∆t)

(
1− e−(t−∆t)/τ

)]
. (11)

For very short durations, i.e. ∆t � τ, the maximum deviation of the cavity from
its previous position is Lmax − L0 ≈ ∆ε∆t/βτ. In this case, stability of the cavity
can be maintained even if ∆ε is relatively large. The excess air entrained during ∆t
shortens L only by an amount 2πRjetUjet∆ε∆t/π(R2

cap − R2
jet). In the other limit, for

∆t � τ we have instead Lmax − L0 ≈ ∆ε/β that can be very large. In fact, we have
observed cases in which the fluctuations in L spanned the entire length of the cap as
mentioned before. The stability of the air cavity is important in terms of determining
the operation range of the nozzle.

We have tried several types of nozzles to achieve a stable cavity. According to the
above analysis, the requirement is that ε is a monotically increasing function of L with
a slope, β, that is sufficiently large. Guided by the work of McCarthy & Molloy (1974)
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Nozzle dc d (mm) l (mm) α (deg.) D (mm) L (mm)

I 1.6 2.4 3.81 20 6.35 25.4
II 2.0 2.8 5.08 20 6.35 25.4
III 2.4 3.2 6.35 20 6.35 25.4

Nozzle Cap

D

L

l

d dc

α

Table 1. Geometric description of the nozzles used in the experiments.

three basic nozzle types, smooth, conical, and sharp, have been constructed. The jets
produced by these nozzles are shown in figure 4. The smooth nozzle has a cosine
reduction profile and produces a very smooth jet even at relatively high velocities up
to 8 m s−1. The second type of nozzle has a sharp step-like reduction which produces
substantial turbulence right at the exit. The amplitude of the disturbances does not
seem to change very much as a function of the distance from the jet exit over the dis-
tances of interest here. As a consequence, no stable equilibrium position can be found
for the first and second type nozzles. Typically, the air cavity moves back and forth in
the entire span of the cap at a freqeuncy of about 1 Hz. This behaviour is completely
consistent with the simple analysis presented above. The conical nozzle is basically
a truncated cone with a half-opening angle of 20◦. The jets produced by this nozzle
seem to be suitable for our purposes. Based on the above observations, the conical
nozzle seems to be a suitable choice for studying the air entrainment process. All the
subsequent experimental results are obtained with conical nozzles (third type). In the
next section we study in detail surface properties of jets generated by these nozzles.

4. Jet surface roughness
We have used three nozzles of conical cross-section with radii 0.8, 1.0 and 1.2 mm.

The geometric parameters of these nozzles, machined from aluminum, are given in
table 1.

For a better observation of the surface roughness the camera was positioned close
to the jet. As a consequence the field of view was small and only 5 mm axial sections
of the jet could be acquired at the maximum magnification, at which the resolution
was 7.3 µm per pixel along the axial direction and 8.4 µm per pixel radially. Four
sections were imaged in the range 0 to 20 mm with 5 mm increments. The jet profiles
were extracted from the online images by using a simple thresholding technique. The
online data collection was chosen in favour of processing pre-recorded images in
view of the enormous storage capacity required for several thousand pictures. Typical
examples are shown in figure 5. For each section of the jet, 50 images were captured
at about 1 s intervals. In order to account for a possible azimuthal non-uniformity
the process was repeated for jets rotated 90◦ around their axis. In this way, a total of
200 profiles for each axial section were recorded for further processing.
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Figure 5. Typical jet profiles obtained from CCD images of the (5–10 mm) axial section of the jet.
The coordinate z is measured from the nozzle exit. (a) R = 0.8 mm, (b) R = 1 mm, (c) R = 1.2 mm.

To quantify the variation of the jet surface roughness as a function of the distance
from the nozzle exit z, we define the roughness ε(z) as the average of the r.m.s.
average over a distance ∆ of 1 mm around z. For each jet profile there are two edges,
one on each side of the image. Suppose that one of the edges of the jth profile is
defined by the coordinates (r(j), z). Then we define

ε(j)(z) =

(
1

2∆

∫ z+∆

z−∆

(r(j) − r̄)2

)1/2

dz

where

r̄(z) =
1

2∆

∫ z−∆

z−∆

r(j)dz.

The ensemble average of this quantity at a fixed z gives

ε(z) =
1

N

N∑
j=1

ε(j)(z) (12)

where N/2 is the total number of images or profiles for a given section.
In figure 6(a–c) we show ε(z) for various jet speeds and radii. As evident from

figure 4, ε is small at the jet exit but increases gradually further downstream from
the exit. In all the cases presented here the roughness was too small to be detected by
our CCD camera in the range z = 0–0.5 mm. From z = 0.5 mm onward, ε(z) shows
a rapid increase but levels off at some distance from the exit.

To establish a connection between ε and the air entrainment rate we measured the
length of the air cavity, i.e. the distance from the jet exit to the intersection point
where the jet hits the body of water in the cap (see figure 3). The air entrainment
rate is simply deduced from the measured air flow rate (figure 2) under the assumed



The entrainment of bubbles by a liquid jet 199

(a)
50

40

30

20

10

0 5 10 15 20
Axial position, z (mm)

ε(
z)

 (
l

m
)

Ujet (m s–1)

25

6.1
7.2
8.3

(b)
50

40

30

20

10

0 5 10 15 20
Axial position, z (mm)

Ujet (m s–1)

25

5.3
6.1
6.8

(c)
50

40

30

20

10

0 5 10 15 20
Axial position, z (mm)

ε(
z)

 (
l

m
)

Ujet (m s–1)

25

3.7
4.7
5.7

Figure 6. Graph of the axial dependence of jet surface roughness for three nozzles at various flow
rates. (a) R = 0.8 mm, (b) R = 1 mm, (c) R = 1.2 mm.

steady-state conditions (Qent = Qair). By using the air entrainment rate given by (4)
we can also predict Qent from the knowledge of ε(L) as computed in (12). Since a
positive β is required for stability, it is apparent from figure (6a–c) that there is a
finite range of air entrainment rates for which a stable air cavity can be maintained
in the cap at a fixed jet velocity. Even in this stable range, the intersection point was
not always steady but fluctuated around the equilibrium position. The amplitude of
these oscillations was usually small (of order 1 mm) except for cases corresponding to
long cavities where it could be as high as 5 mm. A sequence of about 20 CCD images
were acquired to obtain a mean value. In figure 7(a–c) we have plotted the measured
entrainment rate as a function of the length of the air cavity in the cap together with
the predicted rate given by (4). In all cases the two curves show a similar trend and in
some they are on top of each other. The agreement is better for smaller nozzles and at
higher speeds. The standard deviation of the r.m.s. averages, which can be interpreted
as a measure of the roughness distribution in time at a fixed axial location, is also
plotted in the same figure. The discrepancy between the measurements and (4) in
figure 7(c) seems to be caused by the non-uniform distribution of the jet roughness.
The validity of (4) for the cases considered in this study is however supported by
these plots and the direct relationship between the air entrainment rate and the jet
surface roughness is confirmed.

A close examination of the jet surface reveals that a train of waves become visible at
around 5 mm from the jet exit and evolves into a complex shape further downstream.
The average wavelength of these waves is computed by taking the fast Fourier
transform of the profiles. A von Hann filter is used to first smooth out the edges of
the jet profile and zero padding is supplied to extend the transform to 1024 points.
The average power spectra obtained from these FFTs are plotted for successive 5 mm
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Figure 7. Measured (squares) and predicted (open circles) air entrainment rates as a function of
the cavity length. The error bars represent the standard deviation of the r.m.s. roughness obtained
from 200 measurements. (a) R = 0.8 mm, (b) R = 1 mm, (c) R = 1.2 mm.
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Figure 8. Power spectrum of jet surface profiles in the 5 mm sections from 0 to 20 mm from the
jet exit. Section (0–5 mm) solid line, (5–10 mm) dotted line, (10–15 mm) dashed line, (15–20 mm)
long dashed line. (a) R = 0.8 mm, (b) R = 1 mm, (c) R = 1.2 mm.
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Figure 9. Proposed mechanism of the formation of jet surface roughness and the graph of the
average wavelength as a function of the momentum thickness. The solid and dashed lines represent
the equations λ = 17.5δ1 and λ = 15.7δ1 which were developed for a boundary layer on a flat plate.

sections of the jet in figure 8(a–c). The first peak appearing in these plots at 1/λ =
0.2 mm−1 corresponds to the length of the trace (5 mm). The second peak, which is
more pronounced in the 0.8 and 1.0 mm nozzles, is due to the waves on the jet surface.
The identification of the average wavelength is done by inspecting the average power
spectrum of the second 5 mm section (i.e. in the interval 5–10 mm) of the jet where
waves seem to appear first.

To explain the origin of these waves and derive an expression for the wavelength
in terms of flow conditions, we assume that the boundary layer that develops inside
the nozzle becomes unstable and causes roughness on the jet surface. A similar
mechanism has been proposed by Dai, Hsiang & Faeth (1996) for a coaxial free jet
where the onset of the free surface roughness has been correlated to the instability
of the boundary layer. It must be noted that we are dealing with jets that are in
the transition regime from laminar to turbulent. By using the well-known theory of
Tollmien–Schlichting waves we can relate the momentum thickness to the wavelength
λ. For simplicity, curvature effects can be ignored in our case in view of the short
exit section of the nozzles which keeps the boundary layer thin with respect to the jet
radius. According to the Blasius boundary layer stability analysis (Schlichting 1979)
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we have the lowest unstable wavelength at the onset given by

λ = Cδ1 (13)

where δ1 is the displacement thickness and C is a constant given as 17.5 by Schlichting
(1979) which is slightly higher than its experimental value 15.7 (Drazin & Reid
1981). Although more refined procedures for predicting the instability point have
been developed over the years, (13) is adequate for the purpose of establishing a
connection between the jet surface roughness and the boundary layer. For a current
review of boundary layer stability see Reed, Saric & Arnal (1996). Here δ1 has the
usual value

δ1 = 1.72(νl/Ujet)
1/2 (14)

and l is the distance from the leading edge. In our case we may set this quantity to the
length of the straight exit section of the nozzle. In figure 9 we plot λ obtained from
the power spectra of the surface as a function of δ1 together with (13) with C = 17.5
and C = 15.7. The agreement between the measurements and (13) is remarkable in
spite of the obvious difference in the geometry of the problems. It is evident from this
plot that a relationship between these quantities exists, supporting the hypothesis put
forward above.

5. Bubble size measurements
Bubble size measurements were carried out in an automated manner from online

images acquired during the experiments. An elaborate procedure was developed to
eliminate errors commonly associated with this process. Various steps of the algorithm
are depicted in figure 10 for two images taken at 0 cm from the cap exit where there
are many bubbles and at 3 cm where bubbles are scarce but large. The images are
first passed through an edge detection algorithm followed by a threshold filter. The
resulting black and white image contains only the sharp edges of the original image
(figure 10ii). This procedure eliminates off-focus bubbles. We have not attempted
to extract useful information from bubbles outside the focal plane which is centred
around the jet axis. Individual bubble shapes are searched by scanning this image
and the bubble boundaries are computed as a stream of x and y values by tracing
the transition from black to white. The boundary of each bubble is then passed
through a curvature test to eliminate overlapping bubbles. A very high curvature
along the boundary relative to the average radius is assumed to signify that the
detected shape contains more than one bubble. Examples of this situation can be
found in figures 10(a)(iii) and 10(b)(iii) where the algorithm correctly eliminates the
shapes of overlapping bubbles. Once a bubble shape passes these tests, its area is
computed in terms of the number of pixels. The bubble radius is computed as the
equivalent radius of a circle. As explained in § 2, a resolution of 7.2 µm horizontally
and 8.4 µm vertically is achieved in these measurements. This limits the smallest
detectable bubble size to about 10 µm.

For each case reported in this paper we acquired around 100 images and measured
on the average 2000 bubbles. Typical bubble size distributions are shown in figure 11
corresponding to nozzles of different sizes. The measurements denoted by solid, dotted
and dashed lines are made at 0, 1 and 3 cm from the exit of the cap respectively. The
axial width of each image is 5 mm. As evident from the plots the size distribution
becomes wider for larger nozzles. At the same time we note that the power spectra
in figure 8 exhibit multiple peaks for larger nozzles. This observation suggests a
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(a) (b)

(i)

(ii)

(iii)

(iv)

Figure 10. Two sequences of images at 0 and 3 cm from the cap exit showing different steps
involved in the algorithm for measuring bubble sizes from acquired pictures.

relationship between the wavelength of the surface disturbances and the bubble size,
which will be explored further in this section.

In all three cases, a widening of the distribution, although to a lesser to degree, is
also observed as the measurement location is moved away from the cap. There are
basically two factors responsible for this shift towards larger bubbles. The first one is
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Figure 11. Normalized bubble size distribution for different nozzles at 0 (solid line), 1 (dotted)
and 3 (dashed) cm from the cap exit. r = 0.8 mm, r = 1 mm, r = 1.2 mm.

due to the difference in the bubble velocities. Since large bubbles slow down faster
than small bubbles, they appear more abundant further downstream. This trend
continues up to a certain critical point beyond which they completely disappear,
partly due to the buoyancy force. Further downstream, only smaller bubbles can be
seen. The measurement locations were much nearer to the cap exit than this critical
point. Therefore the velocity effect is observed as a shift towards larger bubbles in the
present measurements. The second factor is coalescence, which is expected to occur
at high void fractions in the bubble mixture.

The change in the bubble sizes is quantified by plotting the average radius of the
distribution at 0 and 3 cm in figure 12(a) as a function of the flow ratio Qair/Qwater .
First we note here that the range is confined between 50 and 100 µm which is
difficult to achieve with conventional techniques, e.g. using a porous surface. An
average bubble radius of 50 µm is considered desirable in an actual implementation
(de Rijk, van der Graaf & den Blanken 1994). However, the average bubble size
increases substantially further downstream. The percent change between the 0 and
3 cm measurements is plotted in figure 12(b). There is some scatter in the data but
there seems to be a linear increase with the flow ratio. Since this difference is due to
both velocity and coalescence effects, the question of the role of coalescence cannot
be resolved by these plots. To address this point we consider the maximum bubble
radius which can be a good measure of the effect of coalescence in spite of it being
prone to statistical errors. In figure 13(a) the maximum bubble radii at 0 and 3 cm are
plotted as a function of the flow ratio. The fact that the maximum radius changes as
a function of distance is already an indication of coalescence. However, this change,
which is plotted separately in figure 13(b) as a percentage, is found to be insensitive
to the flow ratio.

We have discovered an interesting connection between the average wavelength of
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Figure 12. Average bubble size at 0 (solid circles), 3 (open triangles) cm from the cap exit as a
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as a function of the flow ratio Qair/Qjet (a). The percent change from 0 to 3 cm is plotted in (b).
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(a)

(b)

Figure 15. Close up images of the bubble formation in the cap. Here the jet radius and the cap’s
inner radius are 0.8 and 1.2 mm respectively.
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(c) (d )

(e)

Figure 16. Proposed mechanism of bubble formation by the jet. Axial symmetry
is assumed for clarity.

the jet surface waves and the maximum bubble size. In figure 14 a plot of these
quantities basically implies that the maximum bubble radius is around λ/4 over
the range of the cases covered here. Although we do not have conclusive evidence
of the actual mechanism responsible for this relation we propose the following
explanation based on the available experimental evidence. From closeup images such
as the ones shown in figure 15 it is evident that the bubbles are mostly formed
by the breakup of much larger cavities or pockets around the jet. An idealization
of the process is depicted in figure 16 where for clarity we assume axial symmetry
although this is not necessary. Large cavities are initiated by disturbances on the
jet surface and penetrate up to 1 mm into the liquid before disintegrating into
smaller bubbles. Assuming that the thickness of the cavity is comparable to the
roughness amplitude ε we expect the depth and width of the cavity to be much
greater than its thickness. When the cavity is closed off at the top it breaks up into
smaller bubbles. The dominant length scale of the breakup in the axial direction is
governed by the jet surface properties. In this direction, the diameter of the newly
formed annular bubbles should be comparable to the half-wavelength of the jet
roughness. If the breakup of the bubbles along the perimeter of the jet follows the
axial breakup, the average bubble diameter is expected to be of the same order as
the annular bubble diameter. Bubbles produced in this way are further broken up
by the turbulence generated by the jet. Therefore it is reasonable to assume that the
size of the largest bubbles is correlated to the wavelength of the jet surface roughness
(figure 14).
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6. Numerical simulations
The experimental observations on bubble generation can be put in a theoretical

context by focusing on the formation of the air pockets shown in the images of
figure 15. The region of interest is then the annular section around the jet inside the
cap. We are interested in forces causing the deformation of the free surface of this
region near the jet.

In the absence of any analytical solutions describing this process we turn to
numerical simulations to study its dynamics. Unfortunately, numerical simulation
of the full problem is very difficult and a number of simplifications are necessary.
Following Prosperetti & Oguz (1997) viscous effects are ignored and a boundary
integral code is utilized to simulate the free surface deformation. The numerical
model involves a number of idealizations such as the inviscid flow assumption and
axial symmetry. Nevertheless, these simulations are quite useful in identifying certain
crucial factors. The velocity field is represented by a potential φ which obeys ∇2φ = 0
as demanded by the continuity equation.

The code simulates the liquid motion in the annular region between the jet and
the cap’s inner wall. The numerical domain of the simulations is a rectangle in the
meridian plane of the jet defined in cylindrical coordinates by Rjet < r < Rcap and
0 < z < Zmax. The equilibrium free-surface location corresponds to z = 0 and Zmax is
large enough that end effects can be ignored. A value of 4(Rcap − Rjet) is used in the
simulations. Three sides of the numerical domain defined by r = Rjet, r = Rcap and
z = Zmax are assumed to be impermeable, i.e. the normal derivative of φ is zero. The
free surface at z = 0 is assumed to be flat initially.

The actual bubble generation event is simplified as follows. A pressure pulse of
ρU2

jet/2 over a ring around the jet is used to mimic the effect of the disturbances. This
is based on the concept that, when a bump riding on the jet hits a stationary free
surface it generates a stagnation pressure of approximately ρU2

jet/2. In this scheme,
the force exerted by this bump is taken into account while its mass is ignored. The
width of the ring is set to a value comparable to the roughness of the jet. The only
opposing force to the penetration of the pressure pulse is surface tension. A force
balance gives the critical Weber number of (3) Wecrit = 2.

Initially, φ is zero on the free surface, which is flat so that the fluid is stagnant.
The evolution of φ on the surface is given by the Bernoulli integral

Dφ

Dt
= 1

2
|∇φ|2 +

σ

ρ
C+ P (r) (15)

where C is the curvature, and P (r) is non-zero and equal to ρU2
jet/2 only in the

narrow region (r − Rjet) < ε.
In figure 17 we show free-surface shapes at different times given in units of 0.1 ms

at the upper left corner of each frame for a jet of R = 0.8 mm, U = 6 m s−1 and
ε = 20 µm. The jet is shown at the left of each frame and is assumed to be straight.
The computational domain is the shaded region in these plots. The annular cavity
deforms as a result of the applied pressure pulse and a very narrow cavity around
the jet is formed. In this case We = 10.2 which is above Wecrit. The penetration of
the cavity therefore proceeds unimpeded. Similar shapes are obtained in simulations
with higher values of We. The cavity length in the last frame is 1.6 mm which is
consistent with observations (figure 15). Capillary waves are initiated as a result of
this deformation and propagate towards the cap’s inner wall. They are then reflected
back towards the jet entrapping a pocket of air. As expected, this tendency to close is
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Figure 17. Boundary integral simulation of cavity formation by a disturbance on a jet. The effect
of the disturbance is approximated by a ring of width ε over which an overpressure of ρU2/2 is
applied. Here We = ρU2ε/σ = 10.3 and the cavity advances indefinitely into the liquid. The case
corresponds to U = 6 m s−1, ε = 20 µm, R = 0.8 mm and Rcap = 1.2 mm. Times are given in 0.1 ms.

inhibited at higher Weber numbers (not shown here). The time scale for this process
is given by the total travel distance which is equal to twice the width of the annular
region D, divided by the velocity of the capillary waves

∆tc =
2D

(2πσ/ρε)1/2
. (16)

For the case in figure 17 ∆tc is around 0.17 ms which is higher but of the same order of
magnitude as the simulation value of 0.03. It must be noted that the wave reflection,
which is not a factor in the case of an unbounded domain, prevents the cavity from
becoming too large. In reality, the cavity close-off is probably controlled more by the
incoming bumps on the jet surface. Jet profiles also suggest that these bumps are not
isolated but appear in the form of a wave train, increasing the possibility of cavity
closure.

When ε is set to half of its value in the previous case (We = 5.1) cavity penetration
is significantly inhibited (figure 18). Initially, the free surface deforms much in the
same way as in figure 17 but the process decelerates after a certain time when the
curvature becomes large near the jet. These simulations agree with the case presented
in figures 6(b) and 7(b) where the onset of the entrainment is observed around
U = 6 m s−1 and ε = 10 µm. Threshold points extracted from all measurements are
plotted in figure 19 in the form of a critical We below which air entrainment is not
possible. There is some scatter in the data due to the unstable nature of the cavity.
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Figure 18. As figure 17 but here ε = 10 µm, We = ρU2ε/σ = 5.2 and the cavity tends to stop at
some distance.
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Figure 19. Graph of the critical Weber number above which entrainment is observed for cases
covered in this study.

Nevertheless the critical Weber number seems to have an average value of 4 which is
in approximate agreement with the simulations.

7. Conclusion
Bubble production by a liquid in a special nozzle has been studied experimentally

and numerically. The results show the importance of the jet surface properties. This is
in contrast to previous investigations which relied on non-dimensional numbers based
on the jet itself. In particular, the average roughness of the jet is shown to control
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the air entrainment rate and the average wavelength of the disturbances seems to be
correlated to the bubble size distribution.

The nozzle geometry, which in turn defines the boundary layer structure in the jet,
has a direct influence on the jet surface. Stable entrainment was achieved by using a
conical nozzle that produces a jet with a monotonically increasing roughness.

It is found that bubble production is a result of the breakup of relatively large
pockets of air that form around the jet. Numerical simulations are used to study
the dynamics of formation of these pockets. Surface shapes obtained numerically are
in general agreement with experiment. Based on the simulations and experimental
observations, we concluded that surface tension is the limiting factor on the initiation
of the air entrainment.

The author would like to thank Professor A. Prosperetti for his comments and
suggestions during the course of this research, J. Libertini for her assistance in running
the experiments and Professor J. Katz for some helpful comments. This study has
been supported by the National Science Foundation grant no. CTS 9318724.
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